Cinétique en couche mince ou pour des espèces adsorbées

Figure 5. Ribbon representation of the crystal structure of *T. versicolor* laccase (PDB code 1KYA; structure solved by Bertrand et al.109) showing the protein superstructure in blue and the copper atoms as yellow spheres.
Cinétique en couche mince

Courant anodique

\[I_a = nF A k^\Theta \left[c_R(0,t) e^{\alpha nF(E-E^{\Theta'})/RT} \right] \]

\[I = -nFV \left(\frac{dc_R(t)}{dt} \right) = -nFVv \left(\frac{dc_R(E)}{dE} \right) \]

Équation différentielle

\[V \left(\frac{dc_R(t)}{dt} \right) = -A k^\Theta \left[c_R(t) e^{\alpha nF(E-E^{\Theta'})/RT} \right] \]

\[\frac{dc_R(t)}{c_R(t)} = -A k^\Theta \left[e^{\alpha nF(E_i+\nu t-E^{\Theta'})/RT} \right] dt \]
Cinétique en couche mince

Relation concentration-Potentiel

\[
\frac{dc_R(E)}{c_R(E)} = -\frac{A k^\oplus}{\nu V} \left[e^{\alpha nF(E-E^\ominus)/RT} \right] dE
\]

Surtension

\[\eta = nF(E - E^\ominus) / RT \]

“Thin layer constant”

\[K_{cm} = \frac{RTA k^\oplus}{nF\nu V} = \frac{RTk^\ominus}{nF\nu \delta} \]

\[
\frac{dc_R(\eta)}{c_R(\eta)} = -K_{cm} e^{\alpha \eta} d\eta
\]
Cinétique en couche mince

Concentration

\[c_R(E) = c_{\text{tot}} \exp \left[-K_{\text{cm}} \alpha^{-1} e^{\alpha nF(E-E^\Theta)/RT} \right] \]

\[\delta = V/A = 10^{-5} \text{m}, \alpha = 0.5, \nu = 1 \text{mV} \cdot \text{s}^{-1} \]

Réversible et \(k^\Theta = 10^{-8} \text{m} \cdot \text{s}^{-1}, k^\oplus = 10^{-10} \text{m} \cdot \text{s}^{-1}, k^\ominus = 10^{-12} \text{m} \cdot \text{s}^{-1} \)
Cinétique en couche mince

Current

\[
I_a = nFA k^\Theta c_{\text{tot}} \exp\left[\alpha nF(E - E^{\Theta'}) / RT - K_{cm}\alpha^{-1} e^{\alpha nF(E-E^{\Theta'})/RT}\right]
\]

\[
K_{cm} = \frac{RTA k^\Theta}{nF\nu V} = \frac{RTk^\Theta}{nF\nu\delta}
\]

\[
\delta = V/A = 10^{-5} m, \quad \alpha = 0.5, \quad \nu = 1 mV \cdot s^{-1}
\]

Réversible et \(k^\Theta = 10^{-8} m \cdot s^{-1}, k^\Theta = 10^{-10} m \cdot s^{-1}, k^\Theta = 10^{-12} m \cdot s^{-1}\)
Cinétique en couche mince

“Trumpet plot”

\[\frac{(E_{pa} - E^\circ)}{V} \& \frac{(E_{pc} - E^\circ)}{V} \]

Reversible behaviour

Irreversible behaviour
Ampérometrie stationnaire sous contrôle diffusionel
Si la cinétique est rapide, le courant mesure la vitesse d’arrivée des réactifs (Courant réversible)

Si la cinétique est lente, le courant mesure la vitesse de la réaction rédox (Courant irréversible)
Electrode reactions in solution

The Nernst equation fixes the surface concentrations

\[E = E^\circ \quad c_O = c_R \]
Courant contrôlé par la diffusion

Si la cinétique de transfert d’électrons est très rapide par rapport au transfert de masse, l’équation de Nernst est toujours appliquée aux concentrations interfaciales.

\[E \quad = \quad E^\Theta' \quad + \quad \frac{RT}{nF} \ln \left(\frac{c_O(0)}{c_R(0)} \right) \]

Le courant mesure la vitesse d’arrivée des réactifs à l’électrode et la vitesse de départ des produits.
Courant de diffusion

Courant anodique (>0)

\[I_a = n FA D_R \left(\frac{\partial c_R(x)}{\partial x} \right)_{x=0} = -n FA D_O \left(\frac{\partial c_O(x)}{\partial x} \right)_{x=0} \]

Courant cathodique (<0)

\[I_c = -n FA D_O \left(\frac{\partial c_O(x)}{\partial x} \right)_{x=0} = n FA D_R \left(\frac{\partial c_R(x)}{\partial x} \right)_{x=0} \]
Approximation de Nernst

En l’absence de convection, la couche de diffusion sur une électrode plane a une épaisseur qui dépend de la valeur du coefficient de diffusion.

Temps caractéristique de diffusion

\[\tau = \frac{\delta^2}{2D} \]

<table>
<thead>
<tr>
<th>δ / μm</th>
<th>τ / s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>10</td>
<td>0.1</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
</tr>
</tbody>
</table>
Couche de diffusion contrôlée

On peut fixer l’épaisseur de la couche de diffusion, soit en contrôlant la convection en solution, soit en choisissant des géométries appropriées.

• Méthodes hydrodynamiques
• Méthodes géométriques
Exemple

Cas standard \(E_{eq} = E^{\Theta'} \)

\(D_R = D_O \)

\[
I_a = n FA D_R \left(\frac{\partial c_R(x)}{\partial x} \right)_{x=0} = -n FA D_O \left(\frac{\partial c_O(x)}{\partial x} \right)_{x=0}
\]

\[
I_a = n FA D_R \left(\frac{c_R(\infty) - c_R(0)}{\delta_R} \right) = -n FA D_O \left(\frac{c_O(\infty) - c_O(0)}{\delta_O} \right)
\]

Oxydation \(E_{eq} = E^{\Theta'} + 0.06 \)
Courant limite de diffusion

\[I_{da} = \frac{nFA D_R c_R(\infty)}{\delta_R} \]
Relation tension-courant

Courant anodique limite

\[I_{da} = nFA \ D_R \ c_R(\infty) / \delta_R \]

Courant cathodique limite

\[I_{dc} = -nFA \ D_O \ c_O(\infty) / \delta_O \]

Concentration en espèce réduite

\[c_R(0) = c_R(\infty) - \frac{\delta_R I}{nFAD_R} = \frac{\delta_R}{nFAD_R}(I_{da} - I) \]

Concentration en espèce oxydée

\[c_O(0) = c_O(\infty) + \frac{\delta_O I}{nFAD_O} = \frac{\delta_O}{nFAD_O}(I - I_{dc}) \]
Equation de Nernst

\[E = E^{\Theta'} + \frac{RT}{nF} \ln \left(\frac{D_R \delta_O}{D_O \delta_R} \right) + \frac{RT}{nF} \ln \left(\frac{I_{dc} - I}{I - I_{da}} \right) \]

\[c_O = 2c_R \]

\[E_{1/2} = 0.6 \text{ V} \]
Relation tension-courant

Potentiel de demi-vague

\[E_{1/2} = E^\ominus + \frac{RT}{nF} \ln \left(\frac{D_R \delta_O}{D_O \delta_R} \right) \]

\[c_O = 2c_R \]
Oxidation simple

\[E = E_{1/2} + \frac{RT}{nF} \ln \left[\frac{I}{I_{da} - I} \right] \]
Electrode tournante

\[\delta = 1.61 \ D^{1/3} \ \nu^{1/6} \ \omega^{-1/2} \]
Influence de la vitesse de rotation

\[E_{1/2} = E^{\Theta} + \frac{RT}{nF} \ln \left(\frac{D_R^{2/3}}{D_O^{2/3}} \right) \]

Oxydation de Ferrocèneméthanol 0.25mM dans NaCl 50mM sur une électrode tournante d'or (Diamètre=3mm). Vitesse de rotation : 200, 400, 800, 1400, 2000, 2600 & 3000 tours/mn. Vitesse de balayage en potentiel =10mV·s⁻¹ aller et retour. On peut noter des instabilités de courant aux hautes vitesses de rotation.
Microélectrodes

Microdisque

Microhémisphère
Microhemisphere

Diffusive flux through concentric hemispheres

\[J_m = 2\pi r^2 D \frac{dc}{dr} \]

Integration at constant diffusive flux

\[\left[c \right]_{r=r_{hs}}^{r=\infty} = \left[\frac{-J}{2\pi Dr} \right]_{r=r_{hs}}^{r=\infty} \]

Surface concentration = 0

Diffusive flux for a reversible reaction

\[J = 2\pi Dr_{hs}c(\infty) \quad \Rightarrow \quad I_d = 2\pi nFD c r_{hs} \]

Diffusion layer thickness

\[\delta = r_{hs} \]

\[r = 10\mu m \]

\[V = 2pL \]
Microdisc electrode

Diffusion layer thickness \[\delta = \frac{\pi r_d}{4} \]

Diffusion limiting current \[I_d = 4 nFD c r_d \]
Recessed microdisc

Continuity of the current

\[I_d = \frac{nFADc_L}{L} = \frac{nFAD(c - c_L)}{\delta} \]

\[I_d = \frac{nFADc}{L + \delta} \]
Microelectrode array

![Microelectrode Array Diagram]
When using a microelectrode array, the measurement time scale should be small enough not to have an overlap of the diffusion layers.
Electrode à bandes en écoulement laminaire

\[I = 0.925 n F c L \left(l D \right)^{2/3} \left(\frac{F_V}{h^2 d} \right)^{1/3} \]

- \(c \) the bulk concentration,
- \(D \) the diffusion coefficient,
- \(l \) and \(L \) the width and length of the microband,
- \(2h \) and \(d \) the height and width of the channel,
- \(F_V \) the volumic flow rate
DiagnoSwiss flow channel
Electrochemical flow meter

0.5mM ferrocenemethanol + 0.1M KCl
Membrane covered electrode

\[I = \frac{nFACD_m}{\delta_m} \]
Electrode à glucose

Glucose \rightarrow Gluconolactone

Gox(O) \rightarrow Gox(R)

$\text{H}_2\text{O}_2 \leftarrow$ Med(R) \rightarrow Med(O) \rightarrow e^-

O_2

Electrode de carbone sérigraphiée

Plusieurs milliards d’électrodes par an
Glucose amperometry

Cross Section

Working Reference Counter

Kinetic measurement

Blood

Membrane

Contacts

No cover necessary

Insulating layer

Top